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the cloud type of that sample. A multivariate normal density

discriminant function then uses this information to identify the

cloud type of the image sample from nine possible 
classes. The

results obtained through this experiment show 
that the classifier

can provide accurate and reliable cloud type classifications 
of

satellite imagery samples. This report presents a detailed mathe-

matical description of the DFT spectral classifier 
technique and

offers some ideas for future modifications to the 
classifier.
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1. INTRODUCTION

Large amounts of global cloud cover data in the form of

visible and infrared satellite imagery are gathered daily by

ground stations throughout the world. These data are readily

accessible and available for exploitation. Nevertheless, the

extraction of useful information (cloud type, fractional cov-

er, precipitation amounts) from satellite data is not keeping

pace with the rate and volume at which these data are collect-

ed.
Although valuable when practiced by a skilled analyst,

current subjective satellite imagery cloud classification

techniques are time-consuming and costly. Hard copies are

expensive to produce and distribute on a large-scale basis.

Accurate human analysis of all available data is not feasible,

and such analyses may lack consistency of interpretation among

photoanalysts.

The abundance of satellite data collected by Air Force

4Global Weather Central (AFGWC) has sparked interest in the

development of efficient real-time imagery processing me-

thods which provide meteorological information quickly and

accurately. AFGWC currently utilizes automated cloud analysis

and classification procedures which determine 3-dimensional

global cloud cover distributions using a 25 nautical mile (rim)

grid spacing. This process, called 3D Nephanalysis (3DNEPH),

uses imagery data from the Defense Meteorological Satellite

Program (DMSP) along with surface, radiosonde, and aircraft

data. DMSP satellites are equipped with very high resolution

or fine mode (1/3 nm) visible and infrared sensors. Nonethe-

less, satellite tape recorders and AFGWC's computer limita-

tions restrict 3DNEPH satellite input to smoothed (3 nm)

imagery for global applications. A decrease in the quantity

of input inevitably decreases the quality of output, especi-

ally for areas where conventional data are sparse or not

available.

Hence there is a need for improving real-time satellite

imagery processing capabilities. The incorporation of fine
5



mode satellite imagery is fundamental for fulfilling the

need, even though significantly larger amounts of data will

have to be processed. Fast and reliable analytical proces-

sing techniques are reasonable and wise approaches to util-

izing fine mode imagery data. Techniques must be able to

reduce large amounts of satellite imagery data while retain-

ing as much information as possible about any clouds in the

imagery.

Discrete Fourier transform power spectrum analysis is

the basis of one such technique which has been studied and

is described in this report. An algorithm was developed as

an alternative to that part of 3DNEPH which determines

cloud types. For this study the algorithm was updated and

modified for use with 2/3 nm DMSP visible and infrared data.

It classifies a 25x25 nm imagery sample as one of nine pos-4 sible cloud types in less than one second on the Air Force
Geophysics Laboratory (AFGL) CDC 6600 computer.

This report presents a detailed mathematical, analyti-

cal, and computational description of this cloud classifica-

tion technique. It also discusses the significance of its

results, and offers some ideas for further refining and im-

provmentof the algorithm.

2. DATA

The spectral analysis routine uses visible and infra-

red data from a DMSP satellite in a 450 nm sun-synchronous

orbit. In particular, imagery from several Mediterranean-

Middle East orbits was studied. Figures la and lb show

samples of visible and infrared imagery from orbit 7399+9
of DMSP vehicle F-i. The Sinai peninsula (A) is located in
the lower center of each image. To the west of the Red Sea

and the Gulf of Suez, the Nile River can be seen.

Each data value, or Pixel, represents the brightness or
temperature of a 2/3 nm region of the earth. 2/3 nm DMSP
data are unique to this study. DMSP satellites are equ~ip-
ped with 1/3 nm sensors. At AFGWC, the brightness value at

6
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each point of the 2/3 Tim imagery was obtained by averaging

four pixels taken from the original 1/3 nm data.

The size of a sample that is classified by this algor-

ithm is 37x37 pixels. It represents a 25x25 ram region of the

earth, which is 3DNEPH's horizontal grid spacing, since each

pixel represents 2/3 nm.

The Man-computer Interactive Data Access System (Mc-

IDAS) at AFGL was used to display the DMSP imagery and

store its digital values. McIDAS is capable of storing 24

500 x 672-pixel arrays per user terminal. Thus the data for
up to 12 visible and 12 infrared images, each one covering a

333 x 448 nm area of the earth, can be readily accessed.

(See Figures 2a and 2b.) The invoking of a McIDAS save com-

mand enables a user to search interactively for interesting

cloud samples within a displayed DMSP image. Once such a

sample is found, the user subjectively evaluates the cloud

type in the image sample, along with its background, for veri-

fication. This information, in addition to the sample's

visible and infrared satellite data, is then written on a

sample save tape. This process is continued until the user

feels an adequate cloud imagery sample set for use by the

automated classifier has been collected.

Figures 2a and 2b show the visible and infrared DMSP

imagery of an area of northern Egypt and the northwestern

region of the Sinai. The Nile delta is clearly visible in

the center of Figure 2a. The darker area in the lower cen-

ter of the image is El Faiyum, a topographical depression

irrigated by the waters of the Nile. The Gulf of Suez is

in the lower right. A line of cumuliform clouds lies to

the west of the Nile (left-center of the image) covered by

a thin cirrostratus shield, hardly detectable in the visible

but highly detectable in the infrared. A 25 x 25 ram cloud

imagery sample used by the spectral analysis routine covers

2_'_ the size of the area covered by Figures 2a and 2b.

4 9
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3. DESCRIPTION OF THE CLASSIFIER

The spectral classifier technique consists of two main

parts, the discrete Fourier transform and a Bayes decision

rule. The discrete Fourier transform of a cloud imagery sam-

ple is first computed, since the transform contains informa-

tion about the shapes and sizes of clouds present in the

imagery field. The transform is then reduced in size to a

power spectrum, which is a vector whose components are nor-

malized averages of the coefficients found in the transform.

Then a Bayes discriminant function decides the cloud type of

the satellite imagery sample using the information contained

in the power spectrum. The discriminant function is derived

from the multivariate normal density function.

In the remainder of the section, a mathematical formali-

zation of this technique is developed in order to provide a

better understanding of the spectral classifier. Symbols are

defined in the Glossary of Terms, page 74.

The continuous Fourier transform has been a standard

analytical tool for solving many types of pattern recognition

problems. However, until recently, applications of the dis-

crete Fourier transform (DFT) have been limited because of

the large amounts of computational time required to calculate

it. With the development of the fast Fourier transform, an

algorithm which computes the DFT quickly and efficiently,

the DFT's use in problem solving has greatly increased.

3.1 The Discrete Fourier Transform

A real-valued, continuous function F(x,y) of two
variables defined on the region Wwhere 0<x5M, O<ySN,

M and N positive integers, can be expressed as a unique

linear combination of products of sines and cosines:

12



F (xy) J A cos 27mx 2rnV + B Cos 27mnx
mFO n=o m,n M N m,n M

sin 2 + C sin 2mix C + D in 2mxn N m,n M N m,n M

anyn (1), ns in nN ()

Si N

for (x,y)CEA, and where Amn Bmn , Cmn , and Dmn CR.
This is called the double Fourier series expansion of F

on R. This representation extends F periodically for all

(x,y)C 2 . An alternate, shorter form is:

S(y) ii 'J'mnne2 ,C(1 + LN), nCC
F(x,y) m=-m n ,ne m,n (2)

whereMN 2+ny=hI !fF -12 V 1-V-( + nNdydx V Vm,nCZ. (3)
m,n - MN /(xy)e

Note that 0,0 is the average value of F over 1W. Equation

(3) is known as the double Fourier transform of F on R.
There are infinitely many harmonics in F, as can be

seen by looking at the upper and lower bounds of the E's

in (1) and (2). Infinitely many coefficients 0 can be

solved for by (3) since F is continuous on ,R. Equations

(1) and (2) are exact representations of F(x,y) on s.
Let = I (i,j)I (i,j)CJand i,jCZJ, where Z is the set

of integers. Consider the discrete function

F(i,j) = F (i,j) V (i,j) C .
F can be extended to the entire lattice of points (i,j) on

the plane R2 such that

F(i+kM,j IN) = F(i,j) for any k,1 CZ,
that is, F is periodic onZx Z. F can be expressed as a
finite series in the form:

^ ^ nj ^2 W mi
F(ij) cos  B cos --n + COS

m=O n=O m n 0  MI N m,n N

* + 27rmi A + 2wmisin N C nsin CosD sinN m,n M N Dm,n Ni

sin (4)

* .- *N
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where Am,n , Bmn , Cmn , D CR. This is called the discrete

double Fourier series expansion of F on Its shorter,

complex form is;

1 ^ n e "  n-1.A
,(i,j) = V N k' a',nC (5

M= E2+1 n= +1 'C

where Cx] is the greatest integer less than or equal to x,

x positive, or the smallest integer greater than or equal to

x, x negative.1  The s are given by equation (6):
M N

n = N , F(i,j)e , m,nCZ

such that _< m !5 and < n <_ . (6)

Note that %00 is the average value of F over .

Equation (6) is known as the discrete double Fourier trans-A

form of F on 1W.
~The coefficients in any Fourier series expansion of a

discrete function F are the amplitudes of the trigonometric

functions they precede. 2 Each coefficient in this expansion

contains information pertaining to the size of a discrete har-

monic that is present in F.

Since it is discrete, F contains only a finite number

of harmonics. There is a limit to the number of unique co-

efficients m,n that can be determined. This statement is

proved in Appendix B.

In a discrete sense, the smallest resolvable nontrivial

harmonic (wave) in either the x- or y-direction needs at

least two points to establish itself, so that the largest

wavenumber F can possibly contain in the x-direction, given

M points in the x-direction, is [ and in the y-direction,

given N points in the y-direction, is .It is impossible

1See Appendix A for the relationship between (5) and (4).
2This is easy to see in equation (4). In equation (5),

remember e cos e + isine , i =-.

14



" ' harmonic to r--' .in'

"> '. 7c- r' e thar , -

aA-~ -nre than If times in the y-c.4rection.

Thus, in equation (4), there are A 's, B 's,
MN 2 2 m,n m,n

Cm,n 's, and D mns, or 4 -- = MN distinct, nontrivial

solvable Fourier coefficients. Likewise, in (5), there are

also MN distinct ,n s. In general only MN coefficients can
be computed when is represented by MN values. 3

The numbers [2] and [N] are called the NYguist wave-

numbers of * on in the x- and in the y-directions,

respectively.

3.1.1 The Significance of Fourier Coefficients

Each coefficient in the Fourier expansion of a discrete

function contains information pertaining to the amplitude of

a discrete harmonic that is present in that function. For

example, if there exists no wave in F with wavenumber

m = i, [-M] < i <  in the x-direction and n = j, < j

<5 in the y-direction, then the Fourier coefficients in

(4) and in (5) with the subscript (wavenumber) "i,j" are
equal to zero.

The harmonics of a Fourier expansion are generated about

the mean of the function which the expansion represents, as is

shown in Figure 3.

The Fourier series representation of the discrete func-

tion of one variable shown in Figure 3a is (set j, n = 0 in

(4)):

= 0.75 - 0.25 cos rx,

for x = 1,2,3,...,8. Note how the cosine wave (dashed curve)

of wavenumber 4 and amplitude 0.25 (A4 = -0.25) lies about

the line y = 0.75, which is the mean A0 of y.

In two dimensions, the mean of a function is not a line

3just as F is periodic, so is its transform. A function

F(i,j) of space is transformed into a function m,n of

wavenumber.

15
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0.75 t I'0.75 0.75
0.50 '

1 234
0I 234,56'" x 0 1O,25 4 WAVENUMBER m

35 78 -0.25
a. b.

Figure 3. A discrete cosine wave A of amplitude 0.25 which lies

about its mean 0.75. y is assumed periodic outside of the region

shown here. Note how the "pattern" established in the first two

points (x 1 and x = 2) occurs four times over the period of Y,

thus making A4 nonzero. Figures 3a and 3b are Fourier transform

pairs: A = 0.75, and A4  -0.25.

1 ,4 0 -3 0 +3 4

3 0 0 0 0 3!

20 +3 0 -3 2 LI3
1 o 0 0 0 1 BLANK 0

I 2 3 4 1 I 2 3 4 A

a. b.

Figure 4. A simple discrete,,finite function (i,j) of two var-

iables defined on the region (- {(i,j) I 1 r i ! 4, 1 !a ! 4, i

and j integerst. G(i,j) is assumed periodic outside ofi.
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but a plane of constant distance A 0  (which is equal to

from the x-y plane. The harmonics present in a function of

two variables take on various values above and below its

mean plane.

Consider the discrete function G of two variables and

its Fourier coefficients. Let M = N = 4, and let G (i,j) be

defined as in Figure 4a. Computing the transform of G for the

form (4), we find A1,1 = 3 and all other 15 coefficients are

identically zero. This is true because & is a discrete,

pure harmonic of wavenumber m = 1, n = 1. By looking at

Figure 4b it is more easily seen that there is in fact a

discrete, two-dimensional harmonic in 0 that occurs

exactly once horizontally (m = 1) and exactly once verti-

cally (n = 1). Instead of defining G as a discrete set of

sixteen ordered triples (i,j, 6(i,j)), a more compact ex-

pression in the form (4) would be:

2f.1.i 2 1.*1
(1,1 Cos- cos 4

3 cos - cos (7)

where i,j C Z such that 1 i 4, 1 ' j 4.
Now suppose we define a-new discrete function H(i,j)

as in Figure 5a. Transforming this function we get A2,2

- 3, and all other 15 coefficients equal zero. His a pure

"cosine-cosine" wave of wavenumber m = 2, n = 2. As can

be seen in Figure 5b, a discrete harmonic occurs

twice in the horizontal (m * 2) and twice in the vertical

(n = 2) in the principal part of its domain, and has

amplitude 3:

^ ^2w.2-i 2w-2"A
H(i,j) = A2,2 cos 2 4 Cos 4

= 3 cos wi cos ir j. (8)

Equation (8) is in the form (4); i and j are as defined

for 8.

As was seen in the previous two examples, the Fourier

transform of a discrete function of two variables is sensi-

1741



4 -3 +3-3 +3 4

3 +3-3 +3-3 3 PA-

2--3 +3-3±+3 2 l+3
1 +3 -3 +3 -3

I 2 ).3 4k 1 2 b.3 4 ,(

Figure 5. A simple discrete, finite function H(i,j) of two

variables defined on the region 4as def'ined in Figure 4i.
H(ij) is assumed periodic outside of!2
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tive to the shapes (wavenumbers) and sizes (amplitudes) of

the harmonics in that function. With this in mind, consider

the function F to be a finite set of visible or infrared
4

satellite data for a particular regionm4 on the earth. F

is certainly a discrete function of two variables. As long

as it is assumed periodic outside of R 5 , its transform can

be computed. The coefficients of this Fourier transform can

provide useful information pertaining to the shapes and sizes

of any clouds present in F over .

This information is the basis of the spectral classi-

fier technique. The DFT of a 37 x 37-pixel array F (25 x

25 nm) containing the satellite-sensed visible or infrared

brightnesses of a cloud sample is computed. The coefficients

thus obtained may then be examined to determine the texture

and patterns of the clouds in the imagery sample.

3.1.2 The Fast Fourier Transform

The DFT of a function can be computed from equations

like (6), but for large M and large N this is a slow opera-

tion. It is then more rapidly calculated by the algorithm

which is known as the fast Fourier transform (FFT).

The FFT is a more efficient, quicker way of computing

the coefficients found in the complex Fourier expansion of

a discrete, finite function. For example, the FFT algorithm

calculates the Fourier transform of a one-dimensional array

of 1,024 values over 200 times faster than the straight-

forward method. Moreover, the output of an FFT is inter-

preted in exactly the same manner as the output of a DFT.

Several restrictions are placed on anydata entered

into the FFT. As is the case with the DFT, the number of

coefficients in the transform of a function must equal the

number of values defining that function. The input data

4In other words, a finite set oflatitude-longitude grid points.
5^

5We are only interested in F on-wand nowhere else, so this

assumption has no adverse consequences.

19



must represent equally-spaced values of a function in the

space domain, and the output must represent equally-spaced

coefficients of its transform in the wavenumber domain. The

input function and its transform are assumed to be one com-

plete cycle of discrete periodic functions. The coefficients

generated by the FFT are not normalized; for an M x N input

array they appear multiplied by M.N.

In general, these restrictions are minimal and the FFT

is a valuable and powerful computational tool when the DFT

of a large function of two variables must be calculated.

3.1.3 Annular Integration

The transform of a 37 x 37-pixel array F contains

37- 37 = 1,369 coefficients. Analyzing each coefficient

separately would be a painstaking, time-consuming approach.

Therefore, the number of these coefficients must somehow be

reduced, while at the same time retaining as much information

about the clouds in the imagery sample F as possible. The

data reduction technique used by this classifier is called

annular integration and is described here.

The square root of the sum of the squares of the real

and imaginary parts of a Fourier coefficient (6) is

defined as Power: + (9)
P ReO' )2(m4))m,n m,n m,n

Just as a Fourier coefficient is a measure of how far a

harmonic deviates from the mean of a function (amplitude),

so is power, since it is defined in terms of the components

of a Fourier coefficient. The set of powers of all the co-

efficients of the transform of a function F is called the

Fourier spectrum of F.

A power can be calculated for every (m,n) of the wave-

number plane for which there is a m,n" These terms can be

placed onto the m-n plane by mapping each Pm,n to the point
(m,n). Then, the powers can be sorted into annular bands

whose components are the same p-distance from the origin, where

20



p [m2 + n2 + 0-] for <_: [2 and jj~<n [XrJ, (10)

and where [ ] is as previously defined.

Given an M x N array of coefficients, the largest number

can be is L2, and the largest number n can be is 12"

Therefore the annular band with the largest "radius" ;max

must be (from (10 )) [M:- F21

max [ + + 0.5. (11)

It is obvious that r 1

Pmin [ 2+ 02 + 0.5] . 0. (12)

For each p, every power term in annular band p is

squared, and these squares are summed together. Finally,

they are averaged, this average's square root is taken, and

then it is normalized. This number is called a normalized

average amplitude (NAA), and is given by:

NA mP P =  0,1,2,...,Pmax (13

where NT(p) is the number of power terms in annular band P,
P 2 is the sum of the squares of the powers in annular

p m,n
band p, and is the normalization factor. (This factor is

N

necessary only when the transform of a function F has been
computed by the FFT, as in this study. This is because the

coefficients from an FFT appear multiplied by M'N, that is,

they appear unnormalized. Whenever equation (6) is used to

compute a discrete transform, the coefficients are already

normalized by !-, thus eliminating the need for normalization

by (13).) Therefore, an array ofP max+l normalized average

amplitudes NAA can be calculated from the discrete Fourier

transform of a cloud sample. When these NAA's are arranged

in order of increasing p, the resulting vector is called a

power spectrum.

For a 37 x 37 transform array the annular integration

technique reduces 1,369 Fourier coefficients to a

P + [ 2F + 2 + 0.5 1+ I = 26-component power

spectrum (a reduction of over 52:1).

21



In order to better understand the concept of annular
integration of power, consider this example. Let M = N = 8.

The number of distinct, concentric annular bands generated

by (10) is anua ad' .]+1=7

[82+ [8l2+ 0.5] + I = 42+ 05 1+ I = 7.

Figure 6 h he seven annular band of an 8 x 8 discrete

Fourier transform.

NAA can be thought of as a measure of the amplitude ofp 'N

the harmonics in F with wavenumber p in one direction. All

coefficients whose powers are used to calculate NAA contain

at least one subscript m or n which is equal to or is "nearly

equal to" p. Each NAA is a weighted average of the ampli-
P

tudes of any two-dimensional waveforms of wavelength either
M

"approximately" - pixels in the x-direction or "approximately"

N pixels in the y-direction, given that F is defined for allP
points (i,j) on an M x N grid.

For a 37 x 37 array of satellite data values which repre-

sent a 25 x 25 nm region of the earth, the wavelength of a

harmonic in an imagery field F with wavenumber 0 in either the

x-direction or the y-direction is inversely proportional to

the wavenumber:

X [3-1,pixels/cycle

F] pixels/cycle).( nm/pixel)~ -P nm/cycle. (14)

For this study, therefore, NAA is the average amplitude of

all two-dimensional waves (cloud patterns) whose wavelengths

are 5nm in either the x-direction or the y-direction of the

cloud imagery sample F. Figure 7 shows wavelengths as a func-

tion of P.

As an example, it is easy to compute the power spectra

of G (i,j) (7) and of H (i,j) (8):

NAA 0 = 0 NAA o = 0

NAA 1 = 83/ NAA 1 = 0

NAA 2 = 0 NAA 2 = 0

NAA 3 = 0 NAA 3 = i

Note that only one NAA, is nonzero in each case. There is

22
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ANNULAR BAND p NT (p)

1 8
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4 22
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6 U1
Figure 6. The seven annular bands of the transform of an 8 x 8
array as generated by (10). Each "block" on the m-n plane repre-
sents the power Pm,n of a Fourier coefficient n (see (9)).
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enough of a difference between these two spectra to be able

to tell which spectrum is G's and which spectrum is A's.

Such differences will be used to determine a sample's cloud

type given its spectrum.

It is interesting to note that annular band 0 contains

the power of just one coefficient, FOO'^

is the unnormalized average of F over 4. Since F is real-

valued, Im(*o,) = 0. Letting p = 0, from (13) we have:

0A~ M .N m,n

- N POO

- unnormalized average)2

unnormalized average
normalization factor

mean of F. (15)
One important property of the annular integration tech-

nique is that it is not sensitive to directionality. AnyA A

finite discrete periodic function F (i,j) oneW rotated any
integerradians 6 will have the same power spec-

trum it "originally" had, even though most of the Fourier

coefficients change. The coefficients in a Fourier trans-
form are sensitive to the absolute directionality (orienta-

tion) of the harmonics in a function, whereas a power spectrum

is not. In other words, a power spectrum retains information

relative to the shapes and sizes of clouds in an imagery
A

sample F but loses the sense of their directionality. This

is an advantageous property for a power spectrum to have,

since the north-south, east-west alignment of clouds should

not affect their classification. It is for this reason that

the spectral classifier uses the imagery sample's power spec-

trum to identify its cloud type.

6 One need only be oncerned with 900 rotations, since any other

rotation of F on ould result in F's not being defined for
AA

all grid points in ,7. Remember F may change but Rremains

fixed.~25



Figure 8 is an example of the rotation property. Func-

tion (a) is rotated 90 0 about the point (1,1) to obtain func-

tion (b). The average value *'0 0 of each function is 2,
but in (a) the only other nonzero coefficient is 1,,
whereas in (b) the only other nonzero coefficient is

-04 1. It is easily seen that *'4, (from (a)) and

0, (fom(b)) are used to calculate each function's re-

spective NAA 4 - since (from (10)):

[ 2+ 02 + 05][. 42 + 0.5] 4.

The patterns in functions 8(a) and 8(b) are the same except
for their orientation. Their power spectra are equal, even

though the functions and their transforms are different.

An infinite number of test patterns could have the

power spectrum given by Figure 8. In addition to the cases
given, there could be variations in both the i and j direc-
tions since any of the 22 Fourier coefficients in P = 44 could be nonzero so long as the sum of the squares of their4 powers is equal to 1.

Annular integration is an effective data reduction tech-
nique and a useful tool for objectively extracting cloud

size information from an imagery sample F. As with any data
reduction technique, some information is lost. This tech-
nique loses the sense of direction of the cloud elements.

It can also confuse highly directional cloud features, e.g.,

cloud bands, with more complex scenes having variation in

all directions, e.g., cumulus clouds. The losses are, how-

ever, adequately compensated by the convenience and speed of
working with a one-dimensional power spectrum. Using AFGL's
CDC 6600 computer, the fast Fourier transform algorithm cal-

culates the discrete Fourier transform of a 37 x 37 input
array F' (1,369 numbers) in 7/10 sec, and the calculation and
annular sorting and summing of the powers of these coeffi-
dients are done in 3/100 sec. Such computational speed can
allow for quick cloud sample identification.
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Figure 8. Illustration of the rotation property of the annular
integration technique. Array (a) is rotated 90 about (1,1) to
obtain (b). Note the pattern in (a) occurs four times 4orizont-
ally (m 4 4) and is unchanged vertically (n w 0)2 thus 44,0 .=

Just the opposite is true for (b) (m - 0 and n a 4), hence 0
a 1. Although oriented differently each of these two arrays I
(functions) exhibits the same pattern. The spectral classifier
would identify each sample array as the same "type" since their
spectra are similar.
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3.2 The Discriminant Function

That part of the classifier which determines from what

type of cloud a given power spectrum has been generated is

called a Bayes decision rule. Simply stated, the cloud'type

chosen by the decision rule to be contained in a satellite

imagery sample F is the one that is most likely to generate

that sample's observed power spectrum. In order to accomplish

this, the rule assumes some knowledge of the spectra of every

cloud type it is allowed to choose.

The decision rule is allowed to classify a sample as

one of nine cloud types: stratocumulus (Sc), stratus (St),

cumulus (Cu), clear, altocumulus (Ac), altostratus/nimbo-

stratus (As/Ns)7 , cirrus (Ci), cirrostratus (Cs), and cumulo-

nimbus (Cb). For convenience, these will be referred to as

cloud types i = 1,2,3,...,9.

Let the finite set 0 = 1 w2 'w3 .... , 9 l of the nine

states of nature w be the set from which the classifier

chooses a cloud type, or in other words, the state of a cloud

sample. Since the state of nature is a chance, unpredic-

table event, w is called a random variable.

The spectral classifier uses the following discriminant

function to help the decision rule decide what kind of cloud

(whichw i) a sample contains:

di(X) = - Pi(x- ri)t"(x p.) - E ln 2W- - lnI

+ ln P(wi), i 1,2,3,...,9, (16)

where x is an r-component column vector 9 , Pi is the r-compo-

nent mean vector of class i, t denotes transpose, Ei is the

r x r class-conditional covariance matrix for class i, 1

is the inverse of , jFj is the determinant of E

7These two cloud types are merged into one category in order

to be consistent with the 3DNEPH.
8E'.', w 3 means the imagery sample contains cumulus clouds.

9 For this study it is an observed 26-component power spectrum.
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and P(wl) is the a priori probability that i occurs.

The matrices pi and Ei' and the a priori probabilities

P(wi ) , must all be calculated from the sample set of images

to be classified prior to any sample classification process

which uses (16). The mean power spectrum pi of cloud class

i is simply the average of all the power spectra generated

from samples containing cloud type i. The matrix i is com-
posed of the covariances ajk of NAA and NAA', which belong

to cloud type i. Along the main diagonal of 2-i where
jk the covariances become variances a a of the

th cvaiace jk kk 'k
kth component NAA1 of the spectra that were generated from

samples containing cloud type i. P(u.) is simply the rela-

tive frequency of occurrence of cloud type j.:

N.

1 -- T(17)
where N i is the number of samples in the data set to be

processed that contain cloud type i, and T is the total num-
ber of imagery samples in the data set. Note that 0 < P(wi )

9
< 1, and that _2 P(Wi) = 1

• ! i= 1

Equation (16), except for the term ln P(ti), is merely

the natural log of the multivariate normal density:

2. (xp)t E-(x - p)
p(x) r/2 1 1/2 el , (18)

where x , E, and p are as previously defined. Hence di

is a measure of the probability of a cloud sample's being

in state w. g-ven that sample's power spectrum x. The i1

for which d i is largest is the most reasonable choice of

cloud type and one that will be correct most of the time.

Such a choice would make p(x) and, therefore, the a posteri-

ori probability P(wil x), the probability of cloud type i

given x, largest.

Let x be a 26-component observed power spectrum gener-

ated from a 37 x 37-pixel cloud sample (thus in (16),

r 26). The term 1in 2w = 13 in 2w is merely an additive
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constant which is independent of i, and can therefore be

ignored. Statistical independence between the NAA's of the

power spectra of the same cloud type is assumed. Thus:

J 0 kGk  , J =

Gjk = o , i/k for j,k = 0,1,2,...,25, (19)

so that i reduces to a 26 x 26 diagonal matrix of variances

of NAA , k = o,1,2,...,25. Rewriting (16) with the above

conditions yields: o]

di(X) 1- [x0 -i0 (x1 '''(x 25  5] I
(02

*25 1

x -A -0 0
* 2A 1

25- 25

or, simplifying,
25 25 i 2
I ( x n - An )  1in +np()

di(X) = - 2 n=0 (ln2 -n + inP(w

i = 1,2,3,...,9, (20)

where x is an observed power spectrum, a 26-component column

vector comprised of x0 , x , x2 , .', x2 5 (Xn NAAn); ;i is
the mean of all NAA n , class i (from Pi); (n) 2 is the

variance of NAAn , class i (from i); P(wi ) is the a priori

probability (17). A di is calculated for each of the nine

cloud types Sc, St, Cu, ... , Cb. The decision rule decides

class k if dk > di for all i p k.
In the form (20) it is easy to see that a cloud imagery

sample's observed power spectrum x is compared component-by-

component to the mean power spectra of each cloud type by

measuring the squared distance (xn - in2 between xn (NM n )
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and 1 for all n, all i.1 0  The smaller (x n 2 is, then ~n n
larger di is, so that the i for which d i is largest indicates

the cloud type whose mean or "characteristic" power spectrum

most closely resembles x.

This is how the decision rule uses the discriminant

function (20) to make its classification decision. The auto-

mated spectral classifier is for this reason called a minimum

distance classifier. If each pi is thought of as an ideal

typical spectrum for cloud class i, then (20) may also be

described as a template-matching procedure.

In cases where x is "close" to more than one character-

istic power spectrum pi (the left-most term on the right side

of (20) is or is nearly the same for more than one cloud

type i), the classifier's final decision depends on P(w).

For example, when x is equally (or nearly equally) close to

two mean spectra pi and Pk' the choice made by the classifier

favors the a priori more likely cloud class. So, if

P(Wk) > P(i ) , then dk > di and cloud type k would be chosen.

A priori probabilities may be used to more suitably

adapt the classifier to different regions of the world. For

instance, in equatorial regions P(w9 ) = P(Cb) is much greater

than, say, P(w2 ) = P(St). However, in maritime midlatitude

areas, just the opposite is likely the case. Differences in

relative frequency of occurrence of cloud types over various

geographical areas can be reflected in a proper choice of

Pi )'s for each of those areas. This is an advantageous

versatility of the spectral classifier technique.

The discriminant function can be thought of as a mathe-

matical formalization of common-sense rules. It is a logi-

cal, effective, and straightforward way of determining the

cloud type of an imagery sample given that sample's power

spectrum.

In addition to using the discriminant function (20) to

identify each cloud sample, two other variations of (20) were

10 The numerator of the left-most term on the right side of
t(20) can be written as (x- p) (x- O = Jjx- pill.

This is called the Euclidean distance from x to Pi"
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utilized to determine how different parts of (20) affect

classification decisions.

The mean classifier, which bases its cloud type deci-

sions solely on the mean visible and infrared values (NAA0 )

of the cloud samples, simply computes the linear distance be-

tween two points:

m.(VISb IRos VIobs- VIS) 2 + (IR - I)
2

i = 1,2,3,...,9, (21)

where VIS and IR are the observed average visible and
obs obs

infrared values of the sample being classified, and VIS i and

1R. are the mean visible and infrared values of all samples
1

of cloud type i. Before (21) can be used, VIS i and IR. must

be known for each cloud class i.1' An m is calculated for

each i, and cloud type k is chosen if mk < m i for all i ' k.

The results obtained by this classification procedure will

indicate how much the means of a sample contribute to cloud

type classification.

Another variation of (20), which is essentially a curve-

fitting operation in a least squares sense, bases its deci-

sions solely on the means and variances of the power spectra

of each cloud types
25 x i)2nE ng

6i(X) = - n= 2 1,2,3,...,9, (22)

nd (0i)

where x, xn, p and (an) are as defined for (20). Equation

(22) is merely equation (20) without the a priori probability

and covariance terms. As in (20), the observed power spectrum

x is compared component-by-component to each mean spectrum

pi by calculating a 6 for each of the nine cloud classes.
Cloud type k is chosen if ak > 6i for all i / k. When com-

pared with the results of (20), the performance rate of (22)

will show how much the classifier relies on a priori pro-

babilities.

The mean classifier follows the same logic as does the

spectral classifier.
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3.3 Data Availability and Classifier Versatility

During nighttime orbits only infrared cloud data are ob-

tained by satellites. There are also times, albeit less fre-

quent, when only visible data are available for use. Never-

theless, more often than not both visible and infrared data

are available for use during the daytime scans of a polar

orbiting satellite.

In order to adapt the classifiers (20), (21), and (22)

to each of the above conditions, simple and straightforward

modifications were made to each.

The visible-only and infrared-only adaptations of the

mean classifier (21) are defined as, respectively,

m IVISb - VISiI , i = 1,2,3,...,9, (21a)i Yob

and mJR = TRbs IRiJ". i = 1,2,3,...,9, (21b)wr i ViS., i-

where VIS obs ,  IRobs' and IRi are as defined for (21).

Formulas (21a) and (21b) make a cloud type decision the same

way as (21) does.

The discriminant functions di(x) (20) and 6i(x) (22)

were adapted to separate and simultaneous visible/infrared

processing in the same way. The spectral classifiers (20)

and (22) use a visible power spectrum x, generated from a

visible imagery sample, as input for the visible-only condi-

tion, and use an infrared spectrum y for the IR-only condi-

tion. Using (22) as an example, when both visible and

infrared imagery are available simultaneously with which to

classify a cloud sample, the individual terms 6 i (x)
(visible) and 6 i(y) (infrared) are calculated separately

for each i and then added together. The cloud type i for

which the sum 6 i (x) + ai(y) is largest is chosen.
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IN 1
4. RESULTS

The available DMSP 5D visible and infrared imagery

was displayed on a McIDAS terminal TV screen. Cloud imagery) samples were then interactively found, examined, and sub-

jectively classified by skilled analysts. Samples contain-

ing mixed clouds were avoided, as were those With coastal

backgrounds and snow-covered areas. Once collected on tape,

a group of cloud samples would then be classified objectively

using the spectral classifier program.

The classifier was allowed to run on two separate sets

of data. The first set, which contained 73 cases, was sub-

jectively classified by a different analyst than was the

second set of 70 samples.

The overall performance of the classifier on both sample

se ts was highly similar (see Table 1). This suggests that

the classification technique is sound and consistent. For

these reasons, the results of both trials have been combined

in the following discussion.

TABLE 1. CLASSIFICATION ACCURACY FOR TWO DATA SETS

Visible IR Combined
Vis and IR

Mean Classifier,
Data Set 1 34% 37% 49%
(73 samples)

Mean Classifier,
Data Set 2 37% 43% 54%
(70 samples)

Spectral Classifier,
Subset 1 66% 68% 82%

Spectral Classifier
Subset 2 64% 63% 79%

The composition of the combined set of cloud samples is

shown in Figure 9. Cirrus is the most common cloud type in

the sample set with 36 of the 143 cases. Cumulus is the next
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most frequent with 24 samples. Mid-level clouds (Ac, As/Ns)

did not appear too often within the available imagery and thus

have a relatively low number of cases: 9 for Ac and 5 for
As/Ns. The backgrounds of these cloud samples range from the

Mediterranean Sea to the Balkan peninsula, and the deserts of

the Middle East and northeast Africa.

With the information shown in Figure 9, the a priori

probabilities P(w 0 (17) can be computed for each of the nine

cloud types. If an observer had to classify this sample set

on the basis of this information only, then optimum results

would be achieved by choosing the most frequent cloud type in

the sample set.

In this case, "blindly" choosing cirrus as the cloud

type of all 143 imagery samples would result in a 25% correct
classification rate MPw )=P(Ci) = .251), since the analyst

7
is sure that 36 of the 143 samples are cirrus. This is con-

siderably higher than a totally random classification approach

4 which yields, on the average, p = 1/9 =.111, or an 11% cor-

rect classification rate.

The overall results of the three classifiers (20), (21),

and (22) should be compared to the above "blind" performance

rates as a measure of the classifiers' effectiveness in deter-

mining cloud type.

4.1 Mean Classifier

The performance rate of the mean classifier was better
than that of the "blind" classification approach (see Table

2a). Attempting to identify from one of the nine cloud types,

the mean classifier classified 36% of the cloud samples cor-

rectly using visible data only (21a), 40% of the cloud samples

using infrared only (21b), and 52% of the cloud samples using

visible and infrared data (21). There was a rather large num-

ber of misclassifications when this method was utilized,

which, although an improvement over the 25% of the "blind

observer," implies that the mean of a cloud sample itself is

not sufficiently discriminatory to clearly distinguish nine
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TABLE 2a. MEAN CLASSIFIER ACCURACY FOR NINE CATEGORIES

Cloud Type Number of Visible IR Combined
Samples Vis and IR

Sc 7 29% 29% 29%

St 10 50% 20% 60%

Cu 24 42% 58% 58%

Clear 19 42% 74% 58%

Ac 9 11% 0 44%

As/Ns 5 60% 40% 60%

Ci 36 25% 17% 42%

Cs 19 47% 42% 63%

Cb 14 29% 64% 50%

Total 143 36% 40% 52%

TABLE 2b. MEAN CLASSIFIER ACCURACY FOR FIVE CATEGORIES

Cloud Group Number of Visible IR Combined

Samples Vis and IR

Low 41 54% 66% 71%(Sc/St/Cu)

Mid 14 36% 36% 57%
(Ac/As/Ns)

High 55 44% 25% 53%
(Ci/Cs)

Clear 19 42% 74% 58%

Cb 14 29% 64% 50%

Total 143 44% 48% 59%
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cloud types in a consistent manner. Figure 10 has a plot of
visible and infrared averages for each cloud type. Some of

the averages are so close (Ac, As/Ns, St) that misclassifica-

tions are expected.

A significant factor reflected in these results is the

diverse range of backgrounds found among the samples. This

greatly affects the means of samples of the same cloud type,

especially those in which a lot of background shows through

(Cu, clear, Ci). For example, one Cu case has a mean visible

count of 19, while another has one of 109, almost six times

as high.

When the cloud samples are classified into fewer cate-

gories, overall results improve. The nine cloud types were

grouped into five: low (Sc, St, Cu), middle (Ac, As/Ns),

high (Ci, Cs), clear, and Cb. 1 2 Thus, for example, a Sc

sample classified as Cu was considered a correct identifica-

tion, or "hit."
Using visible means only, low clouds were correctly

hit 54% of the time, middle clouds only 36% of the time, and

high clouds 44% of the time. For all five categories, 44%

were classified correctly.

Using infrared only, 48% hits were achieved: 66% low

clouds were hit, 36% middle clouds were hit, but (surpris-

ingly) only 25% high clouds were correctly classified.

When visible and infrared means were used simultane-

ously, 71%, 57%, and 53% of the low, middle, and high cloud

samples, respectively, were correctly classified for a com-

bined five-category 59% hits.

If the above five-category results, listed in Table 2b,

are compared with the "blind" classification approach per-

formance rate of 38% (attainable by calling each sample

1 2 Cs and Cb were confused at'times by the classifiers since

they often look very similar in the visible and in the infra-

red. Because of the severe weather frequently associated with

Cb, it was felt that these two cloud types should be in sepa-

rate classes even though results would improve if they were

grouped together.
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Figure 10. Average visible and infrared means for each

cloud type, sample subset 2 (70 samples). High values on

the infrared scale represent cold temperatures.
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"high"),then it is seen that the mean classification approach

has an advantage over chance.

4.2 Average Power Spectra Characteristics

This section discusses the results obtained when the

cloud type decision rules (20) and (22) were utilized on the

samples. Before these two methods could be applied, the means

and variances of the power spectra of each cloud type were

computed.

The average visible and infrared power spectra of each

of the nine cloud types contained in sample set 2 (70 cases)

are plotted in Figures 11 and 12. As can be seen in these

graphs, the most noticeable differences among the average

spectra lie in the lower wavenumbers, and especially in the

means (NAA 0 (15)) of the cloud types. Cs has the highest

visible and infrared means, while Cb has the second highest.

Appropriately, clear has both the lowest visible and lowest

infrared means. (High values on the infrared scale corres-
pond to low temperatures while low values correspond to high

* temperatures.)

As previously stated, coefficients of a Fourier expan-

sion are the amplitudes of waves which lie about the mean of

the function they describe (see Figure 3). They are therefore

some measure of how much the values of that function deviate

from its mean. Hence coefficients m,n that lie in the

smaller-radius (lower p) annular bands are the amplitudes

of larger-scale variations (larger A - see equation (14))

in cloud brightness and spatial configuration, and the coeffi-

cients that lie in the higher p annular bands are the ampli-

tudes of smaller-scale variations (smaller A ). It is in

this sense that the average power spectra, generated from

Fourier coefficients, are indicative of the amount of texture

present in the imagery field. As the higher wavenumber NAA's

increase, the imagery sample appears less uniform.

Beyond wavenumber 6, the range of values (the differ-

ence NAAmax - NAA min ) for the average spectra of the strati-
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Figure 11. Semi-log plot of visible average power spectra of
each cloud type, sample subset 2.
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form cloud types (As/Ns, St, Cs) is particularly small,

especially in the infrared, indicating that their imagery

is quite smooth in appearance. On the other hand, the corres-

ponding range of the cumuliform cloud type spectra (Cu, Sc,

Ac) is significantly larger, especially in the visible.
13

This implies that cumuliform imagery is much less uniform

in appearance than is stratiform imagery. Figures 13 and

14 are plots of average spectra for wavenumbers greater than

6.

4.3 The Discriminant Functions

The Bayesian decision rules (22) and (20), as expected,

performed much better than the mean classifier. Improve-

ments of 20 to 30% over the mean classifier performance rates

were obtained when the discriminant functions were used.

Such a significant increase in classifier accuracy is mostly

due to the fact that there is a lot more cloud feature infor-

mation present in the power spectrum of a cloud sample than

there is in just its mean. Results are shown in Tables 3

and 4.

The largest increase observed was one of 32%. Using

visible data only, the accuracy of the mean classifier was

36%, whereas that of the minimum distance classifier (20)

was 68%.

In general, Cs was the cloud type most often correctly

classified, especially by (20). When both visible and infra-

red data were used to determine cloud type, 17 of 19 Cs

cases were properly identified (89%). Cb cloud samples were

also well classified by both (20) and (22).

Mid-level cloud types were the most inconsistently

classified. For example, only two Ac samples were called Ac

by (22) when visible was used alone. However, when visible

13Stratiform range p > 6; Vis: z .40, IRs s .04.

Cumuliform range p >6; Vis: z 1.0, IR; - .40
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TABLE 3. NINE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITHOUT

A PRIORI AND COVARIANCE TERMS (22)

Cloud Type Number of Visible IR Combined
Samples Vis and IR

Sc 7 57% 29% 86%

St 10 40% 20% 70%

Cu 24 67% 54% 79%

Clear 19 74% 74% 74%

Ac 9 22% 33% 67%

As/Ns 5 20% 0 100%

Ci 36 42% 72% 83%

Cs 19 74% 84% 89%

Cb 14 79% 79% 86% ..

Total 143 57% 61% 81%

TABLE 4. NINE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITH

A PRIORI AND COVARIANCE TERMS (20)

Cloud Type Number of Visible IR Combined
Samples Vis and IR

Sc 7 43% 43% 71%

St 10 70% 80% !00%

Cu 24 58% 50% 71%

Clear 19 95% 89% 89%

Ac 9 78% 44% 78%

As/Ns 5 100% 100% 100%

Ci 36 44% 72% 64%

Cs 19 84% 74% 89%

Cb 14 79% 71% 86%

Total 143 68% 69% 79%
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alone was used by (20), 7 of 9 Ac cases were correctly

classified. A similar statement can be made of As/Ns sam-

ples using their infrared spectra only (0 out of 5 vs. 5 out

of 5). Of course, performance of the classifier on Ac and

As/N6 cloud types should not be judged as either poor or good

on the basis of this information alone, since only a small

number of these mid-level samples were selected and processed.

On the other hand, clear samples were most consistently

classified by the discriminant functions, as can be seen in

Table 3 (74%) and Table 4 (89%).

The mistakes the classifier made when it erred were of-

ten reasonable. Oftentimes Sc was mistaken for Cu, or Cs

for Cb. A measure of how often such mistakes occur lies in

comparing the discriminant function nine-category results

with the discriminant function five-category (low, middle,

high, clear, Cb) results.

The overall five-category combined performance rates

increased up to 10% over those of the nine-category set.

This implies that a substantial number of samples misclassi-

fied as one of nine types were not misclassified as one of

five types. Results are shown in Tables 5 and 6.

The improvement of the accuracy of the discriminant

functions when allowed to classify from five types instead

of nine should not be misinterpreted. Five-category accu-

racies cannot get worse. By retabulating the results for

nine cloud categories into five, the overall results of the

classifier can only remain the same or get better. There-

fore, the important point is not whether the classifier has

improved, but by how much it did improve. Such a comparison

indicates the amount of "reasonable" errors the classifier

makes.

The performance of the visible-only nine-category

classifier (22), poorest of all at 57% (see Table 3), im-

proved by nearly 10% to 66%. This was better than any of

the other observed increases.

The classifier (20) called a sample from the low cloud

category either Sc, St, or Cu 80% of the time, using infra-
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TABLE 5. FIVE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITHOUT

A PRIORI AND COVARIANCE TERMS (22)

Cloud Group Number of Visible IR Combined
Samples Vis and IR

Low 41 71% 54% 83%
(Sc/St/Cu)

Mid 14 21% 21% 79%
(Ac/As/Ns)

High 55 69% 84% 89%
(Ci/Cs)

Clear 19 74% 74% 74%

Cb 14 79% 79% 86%

Total 143 66% 67% 84%

TABLE 6. FIVE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITH

A PRIORI AND COVARIANCE TERMS (20)

Cloud Group Number of Visible IR Combined
Samples Vis and IR

Low 41 66% 80% 85%
(Sc/St/Cu)

Mid 14 86% 64% 86%
(Ac/As/Ns)

High 55 75% 75% 85%
(Ci/C s)

Clear 19 95% 89% 89%

Cb 14 79% 71% 86%

Total 143 76% 77% 86%
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red spectra. It also correctly classified three of 7 Sc sam-

ples, 8 of 10 St samples, and 12 of 24 Cu samples from nine
cloud types using infrared spectra. Of the 18 samplesJ (4 Sc, 2 St, and 12 Cu) that were not correctly classified
from nine types, 10 of them were placed within the low cloud
group. Thus more thian half of the previous incorrect classi-

fications were recovered because of five-category partitioning.
Although high clouds had the highest hit percentage, in

general both high and low clouds had similar performance
rates. As was the case with the nine cloud types, mid-level

clouds were inconsistently classified.

4i.4 Significance of A Priori Knowledge and Its Effect on the

Classifier

Equation (20) differs from (,22) by the 'a priori" terms

2i lnt'5Th and ln P(w.). These extra terms are intended to

4 discriminate between two or more cloud types whose mean

spectra p.~ are all "close" to an observed sample spectrum x.

The difference in the results of using (20) and (22) was

most significant when using visible data only. Increases of

11 and 10% were observed for the nine category (57 to 68%) and

five category (66 to 76%) sets. All other percentages in-

creased on the order of 2-8%.

The degree of help that the a priori terms give the

classifier should not be taken for granted since it may be

unique to this data sample set. More than half of the two

largest increases of 11 and 10% were due to a 64% increase in
the number of mid-level clouds correctly classified when (20)

was used. As described earlier, mid-level clouds were the

most inconsistently classified group, so that such a marked

increase should be carefully considered before determining

the significance of these results.
In those cases when the classification rate of the mid-

level clouds did not change so abruptly (IR-only, combined

visible and IR), the more modest improvements of 2-8% do not
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overwhelmingly suygest the use of (20) over (22). It is true

that the results obtained by (20) were almost always better,

but the processing of a larger data set would provide better

information with which to determine the most favorable dis-

criminant function; The a priori probability and covariance

terms in (20) for such a data set would tend to be a better

climatology of cloud types.

4.5 The Classifier vs. Chance

The spectral classifier is clearly advantageous over a

chance classification approach. Choosing the highest a pri-

ori probability from nine cloud types yields a 25% correct

classification rate while the automatic classifier yields an

81% correct classification rate. Similarly, choosing the

highest a priori probability from five cloud types yields a

38% correct classification rate while the automated classifier

yields an 86% correct classification rate.

In a previous similar study, Blackman and Pickett (1979)

obtained a 46% classification rate for a six-category set

consisting of the Sc, Ac, Ci, Cs, and Cb cloud types. Only

DMSP visible data of 1/3 nm resolution (along the satellite
14

subtrack 4 ) were available for this study, and only the dis-
criminant function (20) was used. Considering only these six

cloud types, this study's corresponding correct classification

rate (usinp 2/3 nm visible data only, along with (20)) was

62%.

4.6 Another Data Reduction Technique

The question of how little information is actually

necessary to enter into a decision-making process in order

to achieve desirable results is highly important since prac-

tical considerations require that the great volume of satel-

14Refer to Bunting and Fournier (1980) for a more complete

description of DMSP satellite sensor capabilities.
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lite data be substantially reduced. This technique has
helped that problem by reducing the number of data values
from 1,369 (an input imagery sample) to 26 (its power- spec-

trum). However, there are variations of this method that can

further reduce the amount of information it needs to effec-

tively classify cloud samples.

It would be unwise to discard any parts of the original

imagery array itself, since the transform of a space-depen-

dent cloud image with "holes" in it1 5 could not be computed.

But once the imagery is transformed into its Fourier coeffi-

cients, the following two possibilities are left open: (1)

utilize less than 26 components of a power spectrum in the

final decision process (discriminant function); and/or (2)

decrease the number of coefficients used in computing a

cloud sample's pcwer spectrum.

The first option requires a more ietailed study of the

power spectra generated from the transforms of the imagery

samples of each cloud type. Blackman and Pickett (1979)
have suggested that most of the class-discriminating power
lies in only a few of the 26 spectral components, so that not

all of them are necessary to obtain the r~sults already pre-

sented. This possibility was not studied but it deserves

added attention.

The second option was studied by arbitrarily decreas-

ing the number of coefficients in computing a power spectrum.

Only those coefficients *m,n with non-negative subscripts
m,n 0 were allowed into any power spectra calculatiors.

All others were ignored. (A more complete description is

given in Appendix C.) This caused minimal discriminant

function modifications, since a full 26-component spectrum

could still be generated from these fewer coefficients. By
restricting the coefficients used to those which lie in the

first quadrant of the principal part of the wavenumber plane

(m,n 'Z0; see Figure 6), at least one Fourier coefficient

lies in any given annular band generated by (10). This im-

plies that at least some information about every harmonic

15(i,j) points where the input function F(i,j) would be undefined.

51



(wavenumber) present in the cloud imagery field will be in-I cluded in its spectrum.
This reduction method cut the number of Fourier coeffi-

cients processed for the power spectrum of a 37 x 37 array
from 1,369 to 361, a drop of almost 4:1. The advantages here

are computational speed and storage reducticn, but the dis-

advantage may be loss of information. The savings in compu-

tational time are small, since annular integration is much

quicker than computing the FFT. Thus a slight to no de-

crease in the performance rate of this technique with respect

to the "all-coefficient" method would justify its use.

Results for the first quadrant coefficient method are

shown for both the nine and the five category trials in

Tables 7, 8, 9, and 10. These Tables are cross-referenced

to their corresponding "all-coefficient" method results. The

number in parentheses which immediately follows each trial's

overall nine- or five-category performance rate (e.g., 60%

(+3%), Vis, Table 7) denotes the change in classifier accu-

racy between the first quadrant or "quarter-coefficient"

method and its corresponding "all-coefficient" method. For

example, 60% (+3%) indicates that the quarter-coefficient
method correctly classified 3% more samples than did the

corresponding all-coefficient classifier.

When using (22), to classify the cloud samples, the

quarter-coefficient method achieved slightly different re-
sults than did the all-coefficient method. There were no
significant changes in any performance rates (±2 or 3 sam-
ples), suggesting that it is just as well to use (22) with

power spectra generated from either all or just one-fourth

the coefficients in the Fourier transforms of each imagery

sample.

When using (20) and only visible data to classify the

cloud samples, the quarter-coefficient method achieved high-

* er results (+7 to +12 samples) than did the all-coefficient

method. Combined visible and infrared classifier performance

also increased, but at a more modest rate (+4j samples).

The results for this data set favor the use of (20) with

the power spectra generated from just one-fourth the coeff 1-
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TABLE 7. NINE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITHOUT

A PRIORI AND COVARIANCE TERMS (22)

"QUARTER-COEFFICIENT" TRIAL
(Compare with Table 3)

Cloud Type Number of Visible IR CombinedSamples Vis and IR

Sc 7 57% 29% 71%

St 10 40% 20% 80%

Cu 24 63% 71% 79%

Clear 19 74% 79% 79%

Ac 9 33% 56% 56%

As/INs 5 0 0 80%

Ci 36 56% 72% 83%

Cs 19 74% 79% 89%

Cb 14 86% 71% 86%

Total 143 60%(+3%) 64%(+3%) 80%(-1%)

TABLE 8. NINE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITH

A PRIORI AND COVARIANCE TERMS (20)

"QUARTER-COEFFICIENT" TRIAL
(Compare with Table 4)

Cloud Type Number of Visible IR Combined
Samples Vis and IR

Sc 7 43% 43% 71%

St 10 70% 70% 1005

Cu 24 75% 46% 79%

Clear 19 95% 95% 89%

Ac 9 78% 22% 67%
As/Ns 5 100% 100% 100%

Ci 36 58% 69% 72%

Cs 19 89% 79% 89%

Cb 14 86% 71% 86%

Total 143 76%(+8%) 67%(-2%) 82%(+3%)
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TABLE 9. FIVE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITHOUT

A PRIORI AND COVARIANCE TERMS (22)

"QUARTER-COEFFICIENT" TRIAL

(Compare with Table 5)

Cloud Group Number of Visible IR Combined
Samples Vis and IR

Low 41 66% 59% 83%
(Sc/St/Cu)

Mid 14 21% 36% 64%
(Ac/As/Ns)

High 55 73% 80% 89%
(Ci/Cs)

Clear 19 74% 79% 79%

Cb 14 86% 71% 86%

Total 143 67%(+1%) 69%(+2%) 83%(-1%)

TABLE 10. FIVE-CATEGORY SPECTRAL CLASSIFIER ACCURACY WITH

A PRIORI AND COVARIANCE TERMS (20)

"QUARTER-COEFFICIENT" TRIAL

(Compare with Table 6)

Cloud Group Number of Visible IR Combined
Samples Vis and IR

Low 41 71% 71% 90%
(Sc/St/Cu)

Mid 14 86% 50% 79%
(Ac/As/Ns)

High 55 82% 78% 91%
(Ci/Cs)

Clear 19 95% 95% 89%

Cb 14 86% 71% 86%

Total 143 81%(+5%) 75%(-2%) 89%(+3%)
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cients of the Fourier transforms of each imagery sample.

However, the use of some or all available Fourier coeffi-

cients should not be confidently determined on the basis of

these results alone since the data sample is not large. As

previously mentioned, time savings are small. Moreover, no

more than 7% of the samples were reclassified as something

else when one-fourth of the coefficients were used.

4.7 The Spectral Classifier and 3DNEPH

The discrete Fourier transform spectral analysis al-

gorithm was developed as a potential alternative cloud classi-

fication technique to that part of 3DNEPH which determines

cloud types. Table 11 contains the spectral classifier (20)

performance rates (all-coefficient method) for those cloud

categories used by 3DNEPH. Only Cb clouds are classified by

3DNEPH when using visible satellite data. Four cloud groups,

Cs/Cb, As/Ns, Ci, and Ac, are used when only infrared data

are available to 3DNEPH. (A slash (/) separating two cloud

types within a group indicates that those clouds are indistin-

guishable to 3DNEPH.) The eight cloud types that the DFT

classifier uses are also used by 3DNEPH when both visible and

infrared data are utilized, with the clear case omitted.

On the average, the DFT spectral classifier (20) was

able to correctly identify 7-8 cloud samples out of every

10 it was allowed to process.

5. CONCLUSIONS

The automated DFT spectral classifier was allowed to

classify 143 cloud imagery samples. The results obtained

from such a small data set left some questions unanswered.

Nevertheless, they are encouraging.

The classifier's performance rate was similar for two

cloud sample subsets, suggesting that it is consistent in its
imagery classification decisions and that the classifier

yields reproducible results.

55



TABLE 11. CLASSIFIER ACCURACY FOR 3DNEPH CLOUD CATEGORIES

Cloud Type Number of Number of Correct % Correct

Samples Identifications

VISIBLE

Cb 14 11 79%

INFRARED

Cs/Cb 33 26 79%

Ci 36 26 72%

As/Ns 5 5 100%

Ac 9 4 44%

Total 83 62 73%

COMBINED VISIBLE AND INFRARED

Sc 7 5 71%

St 10 10 100%
Cu 24 17 71%

Ac 9 7 78%

As/Ns 5 5 1 00%

Ci 36 23 64%

Cs 19 17 89%

Cb 14 12 86%

Total 124 96 77%

.1
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By partitioning individual cloud types into larger

categories of related types, many of the classification

errors were shown to be classifications to related cloud

types (e.g., Sc for Cu).

The use of infrared spectra to determine a sample's

cloud type proved helpful. When used alone, the IR-only

classifier correctly classified 65-70% of the imagery sam-

ples in the data set. This is an important result, since

the use of only IR data is forced over regions underneath

either a nighttime satellite pass or a low sun angle daytime

pass. As hoped, the use of infrared data in conjunction with

visible data greatly enhanced the reliability of the classi-

fier.

The following are offered as suggestions for potential

improvements to the automated cloud imagery classification

algorithm:

1. The averaged 2/3 nm DMSP data used by this routine

provided a reasonable spatial resolution. The unaveraged

1/3 nm data undoubtedly contains enhanced small-scale cloud

feature distinctions and should be tested; however, its use

may not yield significantly better results. The use of 1/3

nm imagery would require the routine to take in 75 x 75-

pixel arrays (25 x 25 nm earth coverage). This represents a

jump from 37.37 = 1,369 to 75-75 = 5,625 input values, an
increase of over four times as much data that would have to

be processed by the routine. The cloud identification accu-

racy of the classifier could not increase fourfold with the

implementation of 1/3 nm data, while data processing time

would, since such an increase in the amount of input would

place additional burden on computer time and storage allo-

cations.

2. The collection of much larger imagery sample sets,

adequately representative of all cloud types, would firmly

te;., thf (. a::. if'*! r ab i ty to d I:t i rqgiu h ;i imong c(I oid

types.

3. The many background features that show through the

clouds in imagery samples, especially those containing hiIch,

5
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) thin cirrus or fair weather cumulus clouds, cause samples

with the same cloud type to look different to the classifier

if their backgrounds are different. One way to minimize this

adverse effect would be to replace all cloudless pixels withI a brightness value of 0 (totally black pixel). Samples would

then have a common background, the difference among all sam-

pies being only the cloud types in them. This would assure

that only clouds will differentiate one sample's cloud type

from another's.

4. The spectral classifier had a performance rate nearly

twice that of the mean classifier, but the spectral classi-

fier's discriminant function required 26 times more informa-

tion. It is most likely that not all 26 components of the

power spectrum of a 37 x 37 pixel cloud imagery sample need

be used by a discriminant function to obtain similar accuracy

results. Perhaps adequate discriminating power among the

cloud types lies in using fewer spectral components, the only

question being which components to use and which not to use.
5. The main feature used by this classification al-

gorithm is a power spectrum. An imagery sample's power spec-

trum is assumed to contain enough information about any clouds

within the sample to identify the sample's cloud type. This

was obviously not always true.I It was observed that beyond the sixth or seventh band

number p, the characteristic spectra of all cloud types had

dissimilar, distinct ranges of values (NAA -NAA'.)max min
When compared with these ranges, a sample's corresponding

observed spectral range can provide additional useful inf'or-

mation to the automated decision process, information which

can successfully identify a sample's cloud type in cases

where that sample's spectrum is not sufficient to correcly

classify its cloud type.

6. As wavenumbers increase, NAA's tend to decrease in

magnitude. Consequently, the variances of the higher annu-

lar band number P NAA's also tend to be small. In this

study, generally over 90% of the variances of the higher

bandnumber components of power spectra were significantly
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less than 1.
Thn t productl'il (determinant of Si ) of all
Therefore, the pc~,o l

these variances (see equation (20)) was an extremely small

positive number, in turn making the term -I InI• in (20)
rather large. It was often greater than any other-term in

(20), including in P(wi). Such dominance does not seem to

give in P(wi) the weight it should have in the decision-

making process of the classifier. For this reason,

-1 ln is better left out of (20) or scaled down to a

more reasonable magnitude. The a priori probabilities

P i ) , since C[0,1], kept the term in P(wi ) reasonable in

magnitude and should remain untouched as a part of the dis-

criminant function.

7. The use of independent data, i.e., data which have

not been used to calculate Pi and Ei (see (16)), would

determine how sound the logic of the classifier is. Mean

spectra and covariance matrices can be generated from an

imagery sample set well representative of all cloud types in

frequency of occurrence and in texture. These spectra could4then be used with (20) to objectively classify different sets
of imagery samples, and would eliminate the need for their

subjective classification (unless desired for independent

verification purposes). In its current state the classifier

computes pi and directly from the input data set, in

addition to requiring interactively supplied input in the

form of subjective imagery sample cloud type identification.

8. In this study, the visible and infrared spectra of

a cloud sample were used simultaneously, but independently,

to identify the sample's cloud type. The use of cross-

correlation and covariance information between the visible

and infrared spectra of an imagery sample, as first suggested

by Blackman and Pickett (1979), may prove to be a sounder

method of using both data types. Refer to Appendix E for a

dQ.'dst'pti mn of thinr method.

On the basis of this study's results, the spectral

classifier has established itself as a fast, effective, and

consistent satellite imagery classification technique. But

as with any prediction technique, this one will ultimately
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succeed or fail depending on whether or not the results it

obtains are found through future experiments to be both

accurate and reliable.
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Appendix A

RELATIONSHIP BETWEEN THE COMPLEX AND TRIGONOMETRIC FORMS OF

THE DISCRETE FOURIER SERIES

Let F(i,j) be a real-valued, discrete function of two

variables defined on an M x N region of M.N equally spaced

grid points, where M and N are positive integers. It can

be shown that the complex Fourier series of F

e2WN- t-V. N
L2] [2]

F(i,j) : i m,n e MN m,nCc
m= [IMl+1 n= +1

can be equivalently expressed in trigonometric form

V(i,j) = mn cos cos N

m=O n=O

i n 2wmi+Bm,n Cos sin N m 6 mn sin M

cos 2-N-- + n sin M sin -N

through use of the following relationships. Let

Re("'kl), and let "l Then:

= 0 (O = 0 since is real-valued)

B0,0 = 000 = D000 0

SR

S, : eo. F O, o ] :o
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mnn ,-n

A

Bn ,n + 2 , -n for:
m -1 1 m 1 ] [ - 1, ar d

C = 2~ -1m,n = -24,n - 2m,-n n L-f _ n

Dm,n = -2 ,n ,-n

Appendix B

PROOF OF THE PERIODICITY OF THE DISCRETE FOURIER TRANSFORM

It is not immediately apparent from equation (6) that

the discrete Fourier transform of the periodic, discrete,

finite function F(i,j) (defined in Section 3.1) of two

variables is itself periodic, discrete, and finite. There

are only M.N distinct complex numbers m n which can be com-

puted by (6). Let m = k, n = 1 be any arbitrary integers.

From (6): M N )
A (i,j)e-2 - N .

*k,l -N _1=1 j=1

Now, let m = k+M, n = 1+N:

iI N -2 w/71i(k+)+ j(kN)]

E Ni ,jeSi=1 j=1

2,1Mi N k)i
e MI. -+M N k

E M(i, j)e2 ,v- l N'iN= j=1

M N
=~~~~ 1 '4_1 %.k2v1O + I)-7v1i+ j)

, F(ij)e M N e
i=1 j=1

Using Euler's formula, and since i + j is always an integer,
= M N -7 -Ik i

k+M,l+N MN Fii'~ M N
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(cos w+ j)-P1~r Ji + j))
M Nk 1M V~. -2 wr1 (A-' AL2)i' L..F(i, j)e MV N
_1=1 j=1

=k,1

Therefore there are only M.N distinct numbers for which (6)
can be evaluated. Thus, if the function F(i,j) defined for

an M x N grid is one complete cycle of a discrete, periodic

function, then its Fourier transform is also one complete

cycle of a discrete, periodic function with M.N unique coef-

ficients in each period.

Appendix C

THE DFT OF A REAL-VALUED FUNCTION

In order for the complex Fourier series expansion of a

real-valued, discrete, finite function F(i,j) to be real-

valued, the following relationships must hold:

;m,n -m,-n

;m,-n = ;-m,n

where , denotes the complex conjugate of n Thesem,n m,n
relationships can be derived by expanding (5) and setting the
coefficients of all the resultant imaginary terms equal to

zero. Ifm, n = , then P = P since (from (9))

mn -m,-n i*m,n -

Im2

( , n)2 + (m , ) 2

mn
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Thus by using only the powers of those coefficients whichI lie in the first quadrant of the rn-n plane (as does the "first
quadrant" method described in the Results section), any infor-

mation contained in the powers of those coefficients which lie

in the third quadrant is used as well. Essentially one-half

the information contained in the transform is utilized when

one-fourth the available coefficients of that transform are

processed.

Apendix D

* CLASSIFIER ACCURACY MATRICES

* 1The following Figures D-1 through D-5 contain matrices

which present the results of the automated classifiers for

the set of 143 cloud imagery samples whose composition is shown

in Figure 7. Each figure is labeled in order to indicate which

classifier variation was utilized to obtain its shown results.

The cloud sample classifications made by skilled analysts are

represented by the rows of each matrix (TRUTH), and the deci-

* sions made by the automated classifier are represented by the

columns of each matrix (CLASSIFIER). Agreement between the

classifier and truth is shown along the main diagonal (upper

left to lower right) of each matrix. Each pair of matrices

contains a frequency distribution on the left, and its corres-

ponding relative frequency distribution on the right. The

figures show in detail exactly how the automated classifiers

performed.

Overall relative frequency for all or any group of

clouds is computed by summing the number of correct hits

* within the cloud type or cloud group of interest, and then

dividing that sum by the total number of samples within that

cloud type or group.
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CLASSIFIER CLASSIFIER
'< z 4 Z

Sc St Cu dAc<'oCi Cs Cb Sc St Cu G' 0c < 'Cs
Sc 2 _ 2 _ I Sc. 29 .14 121.14.14

St 1 5 21 1 I St .10.50 .10 _O .10
Cu 3 10912 Cu .13 .42.38.07

VISIBLE T CLEAR I 6 6812 2 T CLEAR .05_ .324A2.11 .11__
R Ac 1 3 I I 12 1 Ac .11.33.11.11 .22.111

T As/Ns I 31 I T As/Ns .0s 2
H C i81 6 43 3 92 H C i 2203.17 .11 . 088.25 .06

Cs 1 12 114191 CS. Y_ _il1.7D

Cb 2 2 4CbI 1 .21:8

CLASSIFIER CLASSIFIER

Sc St Cu Qo Ac <~ Ci Cs Cb Sc St Cu L) Ac <u Ci Cs Cb
Sc 2 1 1 2 I Sc .29.14.141 .2.14 -

St 22 I 1 4 St .._0 1.0.10._40

INRRDT Cu 2 3 14 5 - -CuO8.1358.211--

INRRDTCLEAR 1 4 414 T CLEAR_ 05.21.741
U Ac R 1 122 Ac .11.22 .2222.11.11

T As/Ns 1 1 211 T As/Ns 20 12.,02
H Ci5 4H_-

6 6 5 5 5 Ci .4.14.14.111 1.171.17 _.1

CS 1I 89 CS 05,05F _4247

CbT I I12 Cb J7 070J712464

CLASSIFIER CLASSIFIER
a:r

Sc StCu Ac < Ci Cs Cb Sc St Cu L) Ac- C i Cs Cb
S c 2 1 I S c 214.14 1.29.141 _

St 1 6 I I I1 _ St .0_ _.101.10.10 1
Cu 2 2 14 5 I Cu _06_058.21104

COMBINED T CLEAR __7 11 I T CLEAR __7 05
VI I AcI121 4 11 R Ac .1I m 4 1 .11.11_

T As/N s 1 1T3 T As/Ns .2 20_
H 1 C5 3 3115 12 H i CiI41_.11 Ln64203 _D

Cs 2 IT1 12 3 C s 41 16
Cb T 2 2 27 C b __.141.14.1

Figure D-1. Mean Classifier.
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CLASSIFIER CLASSIFIER

4 z 4 Z

Sc St Cu _Ac 4CI Cs Cb ScSt Cu 0' Ac 'CI CsCb
S c 4 1Sc 571 .141 M

St I 4 3 2- Si 10.40 0
Cu 3 16 3 2 Cu .13 " 6 31

VISIBLE T CLEAR 14 3 2 T CLEAR .74 _ 161.11
R Ac1 2 2 3 U Ac .11 22 .22 3 .11
U
T As/Ns-I 13 T As/Ns S2O0 20
H Ci 4 3 1 15 5 4 nH Ci .11 .11 X 42J4.11

Cs I 4 14 Cs .0 21_4

Cb I _ I II Cb L 07 j07]T7.791

CLASSIFIER CLASSIFIER

.4 z 4 Z

ScSt Cu dAc CiCsCb ScSt CuU Ac CI CsCb

Sc 2 2 1 2 SC 29 _291.14 129

St 1 2 3 2 2 St .10 _ _ 20

Cu 2 13 I 4 4 Cu 54 04 .17.17

INFRARED TCLEAR 1 2 2141_ 2 T CLEAR 5 .1.741 .11
R Ac I 113 22 R Ac .11 .1133 22.2MU __

T As/Ns 31 1 T As/Ns 60 20.0
H CI3 3 2622 H Ci 08 Oe 7Z

C I6 Cs 05 .11.84t Cs I 2

Cb 2 II Cb I .14D7 7*

CLASSIFIER CLASSIFIER

4 z 4 %

ScSt Cud Ac Ci CsCb ScStCu-0Ac CICsCb

Sc 6 I Sc _6 .14

St I 7 2 st .107o

CU 1 19 11 1 1 - Cu _4,79 1 04 04

COMBINED T CLEAR 2 14 I 2 T CLEAR.II .74 ._ 05.11
VISBIR R Ac Ac.II .I _ 7 .1 1 .

U U C _1 _1 7 1
T As/Ns 51 1--- T A/Ns I.0
H Ci 2 3 1 10 2 H Ci 1 3 __

Cs 211217 Cs J.I I_ 6

Cb- I - -I 12- - Cb ID710 86

Figure D-2. Spectral classifier without a priori and co-
variance terms, "all-coefficient" method.
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CLASSIFIER CLASSIFIER
4 z zn-w *n- w

ScSiCud Ac Ci CsCb Sc St Cud Ac Ci CsCb
sc 3 I I F sc 431 14.14_ .14 .14
St 7 1 2 St _ 70 _ .10 _2

CU 2 14 3 212 CU _8 58 13 Deos

VISIBLE T CLEAR 18 I T CLEAR 95 _ 05
R Ac I 7 1 R Ac .11 _7b .11 I
U U
T As/Ns 5 T As/Ns I.0
H Ci 3 5 1 16 8 ,3 H CI 08 1403 .4422 .0

Cs I I I 16 Cs 0 05 058 4

Cb 11I Cb _7 070.79

CLASSIFIER CLASSIFIER

4 z
Sc St Cu U Ac < Ci Cs Cb Sc St CU Ac CI Cs Cb

Sc 3 I I - 2 SC 431.141 14 1
St a I- -- St 80.10 ,10 I
cu 7 1 ;12( 1 Cu 290450 013

INFRARED T CLEAR I 17 - T CLEAR 05 89 1
R RR Ac 1 1 4 21 AcI .1144 .2-111U T ASN 1U1

T As /Ns 5 T AsNs I
Ci 4 2 6 Ci 10!3

CS 1 2 I 14 1 Cs 5 _ . 05 174.05

Cb 1 _ 21110 Cb 14 .071

CLASSIFIER CLASSIFIER

WW
ScSt Cud Ac<QCi CsCb ScSt Cu AC CI Cs Cb

Se 5 I I sc7 414
St 10 ------------ St _1.0

Cu2 1I 17 - T I 1Cu _ 0 471 .0 N1l

COMBINED T CLEAR 1 1_ 1 T CLEAR.0 9 _5VISc IR R 2 R7 Ac 22 ,7_ _ _!

T As/Ns 5 T As/N. 1.0
H c2' 2 H c6 0,

c S T I ic.[ C A m
Cb _ _ 1 12 Cb---------07

Figure D-3, Spectral classifier with a priori and covariance
terms, "all-coefficient" method.
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CLASSIFIER CLASSIFIER

49 Z 4 Z

Sc St Cu dAc 4 Ci CsCb ScSt Cu dAc aCi CsCbSc 4 I 2 Sc .57 .14 2 1

St 1 4 3 2 St .10.40 30 20

Cu 2 15 ,I 3 3 Cu 08 6A .4 .13 1.13
VISIBLE T CLEAR 14 4 1 T CLEAR 1.74 .21 .0O

Ac 1 3 4 1I U Ac _ .111 31 .4 _U U-Ac.I I 33 .4 ,1

T As/Ns I 2 2 T As/Ns 20 ,4040
H Ci 6 1 5 202 2 H Ci .17.03 .14 6
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Cb I I 12 Cb .0707

CLASSIFIER CLASSIFIER

< z
W W.

Sc St CuL Ac Ci Cs Cb ScStCuQ Ac Ci CsCb

Sc 2  I I 1 2 Sc 29 4.141 J401
St 2 3 2 3 $1 20 W 20

Cu 2 171 3 1 Cu 0 711 04 .13 0

INFRARED T CLEAR 3 15 I T CLEAR 16 7004
R c R
U Ac 1I 51 2 U Ac .11 I6 .11 .22

T As/Ns 3 1 1 T As/Ns 60 20;H
H Ci 2 2613 i C . -- .-- -. 72

Cs I I 2 15 CsD4 D4 .11.79

Cb 21110 cb14 _ 1.71

CLASSIFIER CLASSIFIER

z .4 2LAJ hJt -%

ScSt Cu dAc <O Cs Cb ScSt Cu dAc Cl CsCb
Sc 5 I Ic 71 .14 1 .14si 8 2 Si .80 20
Cu 1 19 I 1 2 Cu 04 79 14 04

COMBINED T CLEAR 15 3 1 T CLEAR .79 .1605
VIS a IR R Ac I R 5 2 U AC .11 .11 6 2-2

T As/Ne I 4 T As/Ns 2 BO
H Ci 3 I 0 2 H C o D3 106

Cs 2 17 Cs U I
Cb I- T 12 Cb

Figure D-4. Spectral classifier without a priori and covar-
iance terms, "quarter-coefficient" method.
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CLASSIFIER CLASSIFIER

< Z < Z

Sc St Cu UAc < C Cs Cb Sc St Cud Ac 4Ci CsCb
Sc 3 1 9 I I Sc 43 .14.14 .14 .14
St 7 1 2 St .70 .10 20

Cu 1I 1 2 1 2 Cu .75 D4 .080408

VISIBLE T CLEAR 18 I T CLEAR _95 5
R Ac 1 7 R Ac .I1I .78 .11U ~ ~ 7U _____l

T As/Ns 5 T As/Ns I.0
H Ci I I 6 2 Ci. 3 .14 58.17 6

Cs 17 Cs 5 D5S

Cb I 12 Cb .070

CLASSIFIER CLASSIFIER
Z < Z

W wj 44
ScSt Cud Ac Ci CsCb ScSt Cuo Ac< CI CsCb

Sc 3_ I 3 sc .43 [ .141 4
St 7 1 I St 70.10 .10.1
Cu 7 II 1 4 1 Cu29 .46 171

INFRARED T CLEAR I 18 T CLEAR 05 9.
R Ac I 1 2 3 2 R Ac. .1122
U U .2
T As/Ns 5 T As/Ns 1.0
H C H

Ci 4 3 25 1 3 Ci .1108 690Cs 2 2115 Cs __.11 .11

Cb 2 I T I0 Cb .14 0 .71

CLASSIFIER CLASSIFIER
< 2Z

ScSt Cu U Ac CI Cs Cb ScSt Cu - Ac Ci Cs Cb
Sc 5 1 I Sc .71 .14 1.141 

St 10 1 St 1.0

Cu 2 19 1 2 Cu 08 79 0408
COMBINED T CLEAR 17 I I T CLEAR S9 0505
VISSIR R R

U Ac I 2 6 U Ac.II 22 67
T As/Ns 5 T As/Ns _1.0

H CI 2 1 6 5 2 H Ci D 03 72.14

Cs 2 17 Cs .11
Cb i 1 12 Cb P o07

Figure D-5. Spectral classifier with a priori and covariance
terms, "quarter-coefficient" method.
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Appendix E

CLASSIFICATION USING A TRI-DIAGONAL COVARIANCE MATRIX

The combined visible/infrared classifier used in this

study computed the 26-component power spectrum for the visible

and the IR of each 37 x 37-pixel imagery sample it classified.

Pickett and Blackman (1979) suggested a different method of

combining the two channels.

Instead of a 26-component visible (x) and infrared power

spectrum (y), this method requires that a 2"26 = 52-component

visible/infrared spectrum z be used as input to the discrimi-

nant function (16). The first component of this spectrum is
visthe mean visible value NAA s
0 of an imagery sample, followed

by that 37 x 37 sample's 25 visible spectral components
NAAvis x , n = 1,2,3,...,25. The 27th component of z isn n

the mean IR value NAAIR of the sample, followed by 25 infra-
0

red spectral components NAA R m = 1,2,3,...,25.

The original 26 x 26 diagonal covariance matrixLi

would increase in size to a 52 x 52 tri-diagonal covariance

matrix i, composed of four smaller 26 x 26 submatrices, all

of which are diagonal. The main diagonals of the upper left

and lower right submatrices consist of the variances of the

visible and the variances of the IR spectral components whose

annular band numbers are the same. The main diagonals of

the lower left and the upper right submatrices consist of the

covariances of the visible and infrared spectral components

whose annular band numbers are the same.

The 52-component column vector z and the larger tri-

diagonal covariance matrix i are then plugged into equation

(16), with r = 52. Thus for a 37 x 37 cloud imagery sample

input array,
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x NAA vis
x ~NAA vs

x 2 ~ NAA VlS
23

Z ~ NAA IRS

YJ ~ NAA IR1 2
NAA IRY22 29

Y25 ~ NAA I R
L j L 25 j L 52j

and

V~~~i that (fo [R::

so tht(rm(16))

d.(Z) z 1 Pi t - -521 2, -11n ~j

+ lnP(w.), i =1,2,3,...,9.

The column vector pi~ is the mean vector of all vectors z

generated from samples containing cloud type i. The deci-

sion rule would choose class k if dk > d, for all i p(k.
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GLOSSARY OF TERMS

DMSP Defense Meteorological Satellite Program

DFT discrete Fourier transform

R the set of all real numbers

R 2 the set of all ordered pairs (x,y) such that

x and y are real numbers

C the set of all complex numbers

Z the set of all integers

zxZ the set of all points (i,j) such that

i and j are integers

V... for every...
S ..... ...is an element of...

[x] the greatest integer 5 x, x positive;

[-x] = -[x]
F(i,j) a discrete, finite approximation to the con-

tinuous function F (x,y)

FFT fast Fourier transform

Re(z),Im(z),z Let z = a + bi be a complex number, i

= -I'. Then:

Re(z) = a

Im(z) = b

z a - bi (complex conjugate of z)

x power spectrum of a visible imagery sample

y power spectrum of an infrared imagery sample

Sc stratocumulus

St stratus

Cu cumulus

Ac altocumulus

As/Ns altostratus/nimbostratus

Ci cirrus

Cs cirrostratus

Cb cumulonimbus

Euler's formula e = cos 0 + isin 6, i =

* I ~I determinant of the square matrix
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